The lives and deaths of jobs: Technical interdependence and survival in a job structure

Organization Science26(6), 1665-1681

(with John-Paul Ferguson and Rembrand Koning)

Prior work has considered the properties of individual jobs that make them more or less likely to survive in organizations. Yet little research examines how a job’s position within a larger job structure affects its life chances and thus the evolution of the larger job structure over time. In this article, we explore the impact of technical interdependence on the dynamics of job structures. We argue that jobs that are more enmeshed in a job structure through these interdependencies are more likely to survive. We test our theory on a quarter century of personnel and job description data for the nonacademic staff of one of America’s largest public universities. Our results provide support for our key hypotheses: jobs that are more enmeshed in clusters of technical interdependence are less likely to die. At the same time, being part of such a cluster means that a job is more vulnerable if its neighbors disappear. And the “protection” of technical interdependence is contingent: it does not hold in the face of strategic change or other organizational restructurings. We offer implications of our analyses for research in organizational performance, careers, and labor markets.

The mechanics of social capital and academic performance in an Indian college

American Sociological Review78(6), 1009-1032.

(with Surendrakumar Bagde)

In this article we examine how social capital affects the creation of human capital. Specifically, we study how college students’ peers affect academic performance. Building on existing research, we consider the different types of peers in the academic context and the various mechanisms through which peers affect performance. We test our model using data from an engineering college in India. Our data include information about the performance of individual students as well as their randomly assigned roommates, chosen friends, and chosen study-partners. We find that students with able roommates perform better, and the magnitude of this roommate effect increases when the roommate’s skills match the student’s academic goals. We also find that students benefit equally from same- and different-caste roommates, suggesting that social similarity does not strengthen peer effects. Finally, although we do not find strong evidence for independent friendship or study-partner effects, our results suggest that roommates become study-partners, and in so doing, affect performance. Taken together, our findings demonstrate that peer effects are a consequential determinant of academic achievement.

Group based trajectories of network formation and dynamics

Social Networks34(4), 506-514.

In this paper, we propose the application of a semi-parametric statistical methodology called Group-Based Developmental Trajectory Analysis to studying the dynamics of social networks. We begin with a discussion of theoretical problems in network analysis that may benefit from this approach. Next, we describe the methodology and how it can be applied to dyadic network data as well as aggregated node level data. We then demonstrate the methodology by analyzing the Newcomb Fraternity and the van de Bunt student data sets. Finally, we conclude with a discussion of potential directions for further research.